ON BINOMIAL APPROXIMATION FOR INDEPENDENT BERNOULLI RANDOM SUMS
نویسندگان
چکیده
منابع مشابه
Poisson Approximation for Sums of Dependent Bernoulli Random Variables
In this paper, we use the Stein-Chen method to determine a non-uniform bound for approximating the distribution of sums of dependent Bernoulli random variables by Poisson distribution. We give two formulas of non-uniform bounds and their applications.
متن کاملCauchy Approximation for Sums of Independent Random Variables
We use Stein's method to find a bound for Cauchy approximation. The random variables which are considered need to be independent.
متن کاملOn the bounds in Poisson approximation for independent geometric distributed random variables
The main purpose of this note is to establish some bounds in Poisson approximation for row-wise arrays of independent geometric distributed random variables using the operator method. Some results related to random sums of independent geometric distributed random variables are also investigated.
متن کاملNormal approximation for random sums
In this paper, we adapt the very effective Berry–Esseen theorems of Chen and Shao (2004), which apply to sums of locally dependent random variables, for use with randomly indexed sums. Our particular interest is in random variables resulting from integrating a random field with respect to a point process. We illustrate the use of our theorems in three examples; in a rather general model of the ...
متن کاملOn bounds in Poisson approximation for distributions of independent negative-binomial distributed random variables.
Using the Stein-Chen method some upper bounds in Poisson approximation for distributions of row-wise triangular arrays of independent negative-binomial distributed random variables are established in this note.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Pure and Apllied Mathematics
سال: 2014
ISSN: 1311-8080,1314-3395
DOI: 10.12732/ijpam.v95i2.10